
Investigating Termination of Affine Loops With JPF

Kevin Durant
Stellenbosch University

Willem Visser
Stellenbosch University

Corina S. Păsăreanu
NASA Ames Research Center

Abstract

We present some preliminary work on how to dis-
cover infinite paths through while loop programs in
which the variables in the loop condition are only
transformed with affine functions. The infinite paths
gathered in this manner are repetitive, that is, after
a fixed number of iterations the loop condition is no
nearer to being violated than it was initially. A proof
is given that shows that this period of repetition is 2
for the one variable case, while for the two variable
case simulations suggest that the maximum period is
at least 6, but a fixed period is not yet known. The
algorithm is implemented as a listener in Symbolic
Java PathFinder, and this implementation formed part
of the Google Summer of Code 2011.

1. Introduction

An affine loop program, or linear loop program
elsewhere in the literature, is a while loop consisting
of only affine transformations within the loop body.
We can define an affine loop program P as follows:

while (y > 0) {
x = Ax+ c;

}

The guard constraint of such a loop is in general more
complex than in the structure presented above, but this
simple form befits the presentation of our algorithm,
and, to an extent, more complicated constraints should
not cause too much of a problem. In the above loop,
x is a column vector of the program variables of P ,
y consists of a subset of these variables, and A and c
are an integer matrix and a constant vector respectively.
Throughout this text, the program variables x will be
restricted to integer values.

Because this form of loop appears often in program
code, its behavioural correctness is, in defiance of

its technical simplicity, rather important. Termination
forms a critical aspect of this correctness, and thus,
given an affine loop, we wish to gain some insight
into its termination properties.

2. Related Work

There currently exist both theoretical and practical
results for this form of loop. Significant results on
the decidability of their termination properties are
presented by Tiwari [1] and Braverman [2]. In practice,
the standard procedure for termination proving of loop
programs is the construction, or synthesis, of ranking
functions. A welcoming primer to the process is found
in a recent paper by Cook [3]. For further reading, one
can refer to [4]–[8].

Our technique differs from the standard procedure
slightly in that, instead of attempting to synthesise a
ranking function which proves the termination of a
loop, we search for infinite paths inside the loop pro-
gram, thus proving the (possible) non-termination of
the program. The algorithm which we present is still a
work-in-progress, and as such there is both theoretical
and practical ground yet to be covered. Fortunately,
however, the algorithm has been implemented and has
already afforded us some useful results, even at this
early stage.

3. The Algorithm

The execution paths which are of interest to us are
those which are periodic with regard to their effect on
the variables found within the loop guard; that is, the
behaviour of the path is repetitive (but not necessarily
cyclic), and can thus be described by some finite path
π. For this form of program, π describes a certain
number of iterations of the loop.

Consider the following simple example:

while (x > 0) {
x = -x + 10;

}

Figure 1. A potentially infinite affine loop program.

If the input value x is non-positive or greater than 9,
the loop program terminates. For values of x in (1, 9),
the program is non-terminating, and the sequence of
values formed by updating x describes a cycle of
length 2. Hence in this case, the behaviour of the
path can be fully encapsulated in two iterations of the
loop, as is seen when one combines two applications
of f(x), the update expression: f2(x) = −(−x+10)+
10 = x. Input values in the set (1, 9) produce infinite
paths because they do not cause the value of x to
oscillate to a non-positive value after the first iteration
(i.e., f(x) > 0 ∀x ∈ (1, 9)).

Applying our algorithm to the above loop produces
the following output:

=======================
Begin Search (Depth: 4)
=======================

[1] Not Recurrent: x[2] < x[1]
for (6)

[2] Recurrent: try (1)

[3] Not recurrent: x[6] < x[3]
for (1)

[4] Recurrent: try (1)

=======================
End Search
=======================

The second result ([2] Recurrent), tells us
that there is a periodic path of length 2 which does
not terminate, and provides the example input value
of x = 1. A periodic path of length 4 which fails to
terminate will thus also exist (two traversals of the
path of length 2 generates an infinite periodic path of
length 4), and is detected by the algorithm.

We seek finite paths π which execute in such a
way as to leave the loop guard variables no nearer
to violating the guard condition than they were before
execution, without causing them to violate this con-
dition at any point of the execution of π. If such a
π maintains this property when executed repeatedly,
we can construct a non-terminating path through the
loop. We can automatically locate paths which express
this property at least once by altering the loop slightly,
making use of a technique first suggested by [9] and

also discussed in [3]:

picked = false;
while (x > 0) {

if (*) {
x0 = x;
picked = true;

}
else if (* && picked) {

assert(x0 > x);
}
x = ax + c;

}

Figure 2. A modified single-variable affine loop.

Here x0, or x0, is used to mark the value of x before
a certain number of loop iterations are applied. The
(*) symbols represent non-deterministic choices, and
thus allow the before and after values of the variable
to be compared over paths containing any number of
iterations. The above example specifically displays the
case where there is only one program variable and the
loop guard is of the form (x > 0). Additional variables
require extra assertions; a simple heuristic [10] is used
to decide upon the assertion (or ranking) condition:

Guard Assert
x > 0 x0 > x
x < 0 x0 < x
x 6= 0 |x0| > |x|

Executing Java Pathfinder1 on the code with the aid
of jpf-symbc2, its symbolic execution extension, will
generate execution cases which cause the assertion to
be violated. The information we extract from such a
case is a path π and an initial value x0, such that when
π travels from x0 to an end value fπ(x0) (where fπ(x)
denotes the compound effect of the updates applied by
π on the variable x), it exhibits the desired property
that x0 ≤ fπ(x0), i.e., the value of the variable is no
nearer to violating the loop guard after π has been
traversed. For figure 1, a possible π could denote the
execution of two loop iterations, with, say, x0 = 2 and
fπ(x0) = f2(x0) = −(−2 + 10) + 10 = 2.

Note that in the broader sense, where the loop
forms only a section of a larger program, there may
be additional restrictions which are applied to the
variables before the loop begins. It is in this scenario
that the stem of executions π0 which leads to the path
π must also be taken into account, as it proves that the
relevant starting value can be reached.

1. http://babelfish.arc.nasa.gov/trac/jpf
2. http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc

Once a periodic path π for which x0 ≤ fπ(x0)
has been found, we check whether this behaviour will
be repeated with subsequent traversals of π. That is,
whether fnπ (x0) ≤ fn+1

π (x0) for all n ≥ 0.
This check is done more abstractly, as we define the

candidate set qπ for a given path π to be (x | x >
0 ∧ x ≤ fπ(x)). If we can show that:

1) qπ 6= ∅, and
2) x ∈ qπ ⇒ fπ(x) ∈ qπ ,

then we call qπ a recurrent set. The second con-
dition is equivalent to (x > 0 ∧ x ≤ fπ(x) ⇒
fπ(x) ≤ f2π(x)), and implies the retention of this non-
decreasing property. In the case that such a recurrent
set exists, π may indicate an infinite periodic path.

This method may appear incomplete if one
considers the possibility of infinite paths which do
not exhibit periodic behaviour. Fortunately, however,
we can show its completeness for at least the simplest
case:

Theorem 1: If a single-variable affine loop program
P with a simple loop guard of the form (x > 0) is
non-terminating then ∃π0 and π such that qπ defines
a recurrent set.

Proof: Assume that P is non-terminating, so an
infinite path inside P exists. This path must perform
infinitely many iterations of P , applying the update
expression f(x) = ax + c each time. Somewhere
along this path there must exist a pair of consecutive
iterations which does not leave its input value xk
decreased, that is, xk ≤ f2(xk). If this was not
the case, the value of x would have decreased after
every second iteration, and would eventually become
negative. We can let π denote the execution of two
loop iterations and build the set qπ , with fπ = f2.
This set is not empty, as xk ∈ qπ . We also know that
f2(x) = a2x+ c(a+1), a non-decreasing function, so
x ≤ f2(x) ⇒ f2(x) ≤ f4(x). This implies that qπ
is recurrent. We thus have a stem π0 from the initial
value to xk, an iteration pair π and a set qπ for which
the recurrent property x ∈ qπ ⇒ fπ(x) ∈ qπ holds.

This theorem suggests that there may be an upper
bound on the period of the path π: in the single-
variable case, this value is 2, and for the two-variable
case simulations suggest a value of 6. We still remain
with the open question: for an affine transformation in
k variables, does an integer n exist such that fn is
always a non-decreasing function?

In the previous proof, the path was assumed to be
infinite, and thus the value of x was never negative.
When investigating a path for a recurrent set, however,
we must not only check that the value of the variable

has not been decreased by the traversal of π, but also
that it does not fall below 0 at any of the relevant states.
We thus strengthen our definition of the candidate set
qπ to include this positivity check: if fπ = fk, and
f0(x) = x, then qπ = (x | x > 0 ∧ · · · ∧ f2k−1(x) >
0 ∧ x ≤ fk(x)). We now call qπ recurrent if:

1) qπ 6= ∅,
2) (f i(x) > 0 ∀i ∈ {0, . . . , 2k−1}∧x ≤ fk(x))⇒

(fk(x) ≤ f2k(x)).
It is this check which has been used while implement-
ing the algorithm.

4. Implementation

Our current implementation considers an affine loop
program P exclusively, separate from the rest of the
program in which it may be contained. The algorithm
is implemented as a JPF listener, AffineLoopListener,
and searches for periodic paths π according to the
number of iterations applied by the path, up to and
including a user-defined limit N .

To accomplish this, the user must supply a Java
method containing the affine loop. The loop variables
must be flagged as symbolic, so that their update
expressions can easily be detected by the listener.
The listener executes the first iteration of the loop to
allow the symbolic expressions for these updates to
be built, and, once complete, fetches these expressions
from the stack attributes associated with each symbolic
integer, before returning the JPF virtual machine to
its former state. Each loop variable is then treated as
an object in order to simplify access to the relevant
data — symbolic integers, guard conditions, virtual
machine indices and compound update expressions —
associated with it.

For example, a simple double-variable while loop
could be presented to the listener as follows:

void twoVariable (int x, int y) {
while (x > 0) {

x = x + y + 2;
y = -x;

}
}

Figure 3. An example loop containing two simultaneous
variable updates.

The relevant .jpf configuration would then need to
declare the twoVariable method as symbolic, with
two symbolic arguments. Upon execution, the listener
reports the fetched update expressions in symbolic
terms:

x = (y_2_SYMINT + x_1_SYMINT) + CONST_2
y = (CONST_0 - x_1_SYMINT)

Note how the update expressions are, in this case,
interpreted as simultaneous. This behaviour has been
enabled here to provide an analogy to the matrix form
of affine loops, and can easily be disabled.

The listener then searches for recurrent sets gen-
erated by paths of length j, where j iterates over
{1, . . . , N}. This enumerative approach to the building
of qπ is a generalisation of the path search presented
in figure 2, and is suited to the case where the loop
program is separate from a parent program. As stated
earlier, the recurrence check takes on the following
form:

1) (x | x > 0∧ · · · ∧ f2j−1(x) > 0∧x ≤ f j(x)) 6=
∅,

2) (x > 0 ∧ · · · ∧ f2j−1(x) > 0 ∧ x ≤ f j(x)) ⇒
(f j(x) ≤ f2j(x)).

Because the symbolic execution library is built to
prove satisfiability, condition 2) must be transformed
into a solvable form:

2) (x | x > 0 ∧ · · · ∧ f2j−1(x) > 0 ∧ x ≤ f j(x)
∧ f j(x) > f2j(x)) = ∅.

If the solver is unable to find an x which satisfies the
above condition, the previous form has been proven
valid. If, however, the condition is satisfied, the set
being checked is not recurrent. The above condition
is stored as two separate constraints by the listener,
because the first, (x > 0 ∧ · · · ∧ f2j−1(x) > 0 ∧ x ≤
f j(x)), describes qπ , and can thus be used to check
the validity of condition 1). In addition, if condition 2)
holds (i.e., the set is empty), solving the first constraint
will produce example input values which generate
infinite paths.

When multiple variables are present in the guard
condition of the loop, the two recurrence conditions
will effectively be duplicated for each variable’s update
expression.

Each compound update expression (those of the
form fk(x)) must be computed symbolically by apply-
ing the update expression repeatedly, and this causes
the stored symbolic expressions to become compli-
cated quite rapidly. As can be seen, when checking
a set for a path of length k, the update expressions
must be calculated as far as 2k. Currently, it is the
checking of these large expressions which requires the
majority of the necessary computation. When multiple
variables are referenced by different expressions, the
expressions grow at an even quicker rate.

5. Example Results

When applied to a loop, the listener reports the
results according to the lengths of the tested paths.
Specifically, if the first condition cannot be satisfied for
a certain path length, no paths with the desired periodic
property exist, so the listener abandons the current
check and continues to check paths of a greater length.
If only the first condition is satisfied, the listener
produces the case which caused the set to fail the
second condition. Lastly, when both conditions hold,
an example case is produced.

Thus, for the example loop presented in figure 3,
the output of a search where paths are limited to a
maximum of 6 iterations would be as follows:

=======================
Begin Search (Depth: 6)
=======================

[1] Not recurrent: x[2] < x[1]
for (3,-2)

[2] Not recurrent: x[4] < x[2]
for (1,-1)

[3] Not recurrent: x[6] < x[3]
for (1,-2)

[4] Not recurrent: x[8] < x[4]
for (1,-2)

[5] Not recurrent: x[10] < x[5]
for (3,-3)

[6] Recurrent: try (1,-2)

=======================
End Search
=======================

Here x[k] denotes fk(x), the value of the x
variable after k transformations. The recurrence check
for paths which span two iterations failed because, for
(x0, y0) = (1,−1), we have

f i(x0) > 0 ∀i ∈ {1, 2, 3}, and

x0 = 1 ≤ 3 = f2(x0), but

f2(x0) = 3 > 2 = f4(x0),

and a counter-example for the validity of condition
2) is found by the solver. This specific example is
recurrent over a minimum of 6 iterations, as the loop
transformation forms a cycle of length 6, shown here

on input (1,−2):

(1,−2)→ (1,−1)→ (2,−1)
→(3,−2)→ (3,−3)→ (2,−3)
→(1,−2).

We can also consider a case where multiple variables
must remain positive:

while (x > 0 && y > 0) {
x = x + y;
y = x - y;

}

Figure 4. An example loop with two positive variables.

and, limited to 2 iterations, obtain the following results:

=======================
Begin Search (Depth: 6)
=======================

[1] Not recurrent: y[2] < y[1]
for (4,1)

[2] Recurrent: try (2,1)

=======================
End Search
=======================

6. Conclusion

In terms of efficiency, the current implementation
can handle only small programs, as much of the
practical work which remains involves optimising the
repeated application of symbolic update expressions
and the simplification of their storage. In addition, the
efficiency of the algorithm is directly linked to that of
the symbolic solver library used.

To apply the algorithm more practically, the im-
plementation must be expanded to include extra pre-
conditions which may be presented by initialisation
code outside of the loop program. The results produced
by the algorithm can then be layered onto these pre-
conditions to create valid example values. In a similar
vein, the algorithm can be expanded to not only
provide example values for infinite paths, but to supply
the set of all values which result in non-termination.

Lastly, the completeness of the algorithm is only
partly understood, and remains to be investigated at
a more fundamental, mathematical level. In particular,
how does theorem 1 generalise (or fail to generalise)
to higher dimensions?

Furthermore, although the work is of interest the-
oretically, the extent of its practical impact is still

questionable. This depends largely on the prevalence of
loops which exhibit affine transformations on variables.

7. Acknowledgements

We would like to thank Andreas Podelski for his
valuable insights during the early discussions around
this work. We would also like to thank Google for their
support during the GSoC 20113.

References

[1] A. Tiwari, “Termination of linear programs,” in Com-
puter Aided Verification, 2004, pp. 70–82.

[2] M. Braverman, “Termination of integer linear pro-
grams,” in Computer Aided Verification, 2006, pp. 372–
385.

[3] B. Cook, A. Podelski, and A. Rybalchenko, “Proving
program termination,” Commun. ACM, vol. 54, pp. 88–
98, May 2011.

[4] M. Colón and H. Sipma, “Synthesis of linear ranking
functions,” in Tools and Algorithms for Construction
and Analysis of Systems, 2001, pp. 67–81.

[5] A. Podelski and A. Rybalchenko, “A complete method
for the synthesis of linear ranking functions,” in Ver-
ification, Model Checking and Abstract Interpretation,
2004, pp. 239–251.

[6] M. Colón and H. Sipma, “Practical methods for proving
program termination,” in Computer Aided Verification,
2002, pp. 442–454.

[7] A. R. Bradley, Z. Manna, and H. B. Sipma, “Termina-
tion analysis of integer linear loops,” in International
Conference on Concurrency Theory, 2005, pp. 488–
502.

[8] ——, “Termination of polynomial programs,” in Veri-
fication, Model Checking and Abstract Interpretation,
2005, pp. 113–129.

[9] B. Cook, A. Podelski, and A. Rybalchenko, “Termina-
tion proofs for systems code,” in Proceedings of PLDI,
2006.

[10] D. Dams, R. Gerth, and O. Grumberg, “A heuristic
for the automatic generation of ranking functions,” in
Workshop on Advances in Verification, 2000, pp. 1–8.

3. http://code.google.com/soc/

